Über binäre flüssige Mischungen III.

Mischungswärmen, Volumeffekte und Zustandsdiagramme von Chlorex mit kernmethylierten Benzolen.

Von

H. Tschamler.

Aus dem I. Chemischen Laboratorium der Universität Wien.

Mit 4 Abbildungen.

(Eingelangt am 6. Okt. 1947. Vorgelegt in der Sitzung am 9. Okt. 1947.)

Nachdem in der 1. Mitteilung¹ das Mischungsverhalten in der Systemreihe Chlorex—n-Alkylbenzole, also mit aromatischen Kohlenwasserstoffen, bei denen eine Verlängerung der *normalen Seitenkette* vorliegt, untersucht worden ist, war es naheliegend, auch eine Systemreihe *kernsubstituierter* aromatischer Kohlenwasserstoffe mit Chlorex zu prüfen, so daß man den Einfluß einer Kernsubstitution und einer Substitution der Seitenketten vergleichen kann.

Meßmethodik. Die Messung der Mischungswärmen, spezifischen Wärmen, Dichten und die Aufnahme der Abkühlungskurven wurde wie bereits beschrieben¹ — durchgeführt.

Darstellung, Reinigung und physikalische Konstanten der verwendeten Reinstoffe.

Chlorex: Es wurde dasselbe Produkt mit denselben physikalischen Konstanten wie in der 1. Mitteilung¹ verwendet.

Dimethylbenzole: Es standen uns ein ortho-Xylol "Schering-Kahlbaum purissimum", zwei meta-Xylol-Präparate "Merck p. A." und "Schering-Kahlbaum puriss.", sowie ein para-Xylol "Merck p. A." zur Verfügung. Die weitere Reinigung dieser Produkte erfolgte durch Trocknung über Na, fraktionierte Destillation nnd Verwendung der konstantsiedenden Hauptfraktion (s. Tab. 1).

Wenn man bei einem Vergleich mit den Literaturwerten die Erstarrungspunkte nicht berücksichtigt, so findet man sehr gute Übereinstimmung. Um aber die Reinheit einer Substanz, die Zweckmäßigkeit

¹ H. Tschamler, Mh. Chem. 79, 162 (1948).

H. Tschamler:

······		m Valal	n X-lol
	0-Ayi0i		p-Ayloi
MolGew.	106,16	106,16	106,16
Sdp.	$+144,0^{\circ}$	$+139,1^{\circ}$	$+138,1^{\circ}$
Schmp.	— 29,2°	— 56,0°	$+ 13,2^{\circ}$
c_{p}^{20}	0,410 cal/g	0,405	0,400
d_{20}^{20}	0,8773	0,8648	0,8608
n_{D}^{20}	1,50376	1,49751	1,49575
ε^{20} ($\lambda = 300$ m)	2,55	2,39	2,24
γ^{20}	29,70 Dyn/cm	28,47	28,35
η^{20}	0,791 Č. P.	0,632	0,643

Tabelle 1.	Physikalische	Konstanten	der				
Dimethylbenzole.							

einer Darstellungsart oder den Erfolg einer Reinigungsmethode zu übersehen, ist die Bestimmung der Erstarrungspunkte unumgänglich notwendig. Dies zeigt dieses Beispiel besonders deutlich. Während nämlich das p-Xylol auch in Hinsicht auf die Lage des Erstarrungspunktes als rein anzusprechen ist, weichen die Erstarrungspunkte der beiden anderen Xylole nicht unbeträchtlich von den Literaturwerten ab. Wir halten es für zweckmäßig, an dieser Stelle eine kurze Zusammenstellung dieser Literaturwerte zu geben.

Autor	Schmp. (° C)	L_F
There are caused and a	52.60	
I mmermanns		
Timmermanns ⁴	49.3°	
$Timmermanns^5$	47.4°	
Huffmann, Parks u. Daniels ⁶	— 53,5°	2733 cal
White u. Rose ⁷	-47,89°	
Rossini ⁸	— 45,5°	
Swallow u. Gibson ⁹	47,9°	
Rossini ¹⁰	— 47,9°	2760 cal
Handbook of Chemistry and Physics	ED 601 ATT 40	
(New 10rk, 1944)	- 55,0 /- 47,4	
² Chem. Zbl. 1911 , II, 1015.		
³ Chem. Zbl. 1912, I. 409.		

Tabelle 2. Erstarrungspunkte von meta-Xylol.

⁴ Chem. Zbl. 1921, III, 287.

⁵ J. Chim. physique 27, 402 (1930).

⁶ J. Amer. chem. Soc. 52, 1547 (1930).

⁷ L. B. III/1, 345.

⁸ L. B. III/1, 345.

⁹ J. chem. Soc. London 1940, 440.

¹⁰ Chem. Zbl. 1934, I, 1016.

Aus dieser Zusammenstellung läßt sich entnehmen, daß zwei Gruppen von Werten auftreten. Leider sind uns die Originalarbeiten von *Timmer*manns nicht zugänglich, so daß es uns nicht möglich war, die Ursache der Änderung seiner Werte um 6° im Laufe der Zeit zu erkennen. Es ist aber auch bemerkenswert, daß *Rossini* zuerst — 45,5° und später — 47,9° fand. Auch in diesem Fall lassen sich die Gründe für dieses Verhalten nicht erkennen. Weiters ist bemerkenswert, daß *Huffmann* und *Rossini* trotz der verschiedenen Lage des Erstarrungspunktes dieselbe Schmelzwärme finden.

Treffen die folgenden Voraussetzungen zu, so kann man den prozentuellen Anteil an Isomerenbeimengungen, denn um solche wird es sich wohl handeln, aus der Differenz des selbstgemessenen Erstarrungspunktes und des "*Standardwertes*" mit Hilfe des E_0 "-Wertes berechnen: 1. keine Verunreinigungen durch andere Substanzen,

- 1. Keine Verumeinigungen durch andere Substanzen,
- 2. keine Mischkristallbildungen zwischen den einzelnen Isomeren und
- 3. die Beimengungen der anderen Isomeren sind nicht allzu groß.

Punkt 1 und 3 sind wohl durch das Ergebnis der selbstgemessenen physikalischen Konstanten und deren gute Übereinstimmung mit den Literaturwerten als gegeben anzusehen. Punkt 2 ist nach dem Befund von Nakatsuchi¹¹ und Kishner u. Wendelstein¹² ebenfalls erfüllt, da Mischungen von m-Xylol mit p-Xylol ein Eutektikum bilden.

Das von uns verwendete m-Xylol würde unter diesen Voraussetzungen im Vergleich zu dem Wert von Huffmann 8,3%, im Vergleich zu Rossini 34,7% Isomerenbeimengung enthalten. Während das erste Ergebnis nicht unwahrscheinlich ist, da eine Anzahl der physikalischen Konstanten des m-Xylols zwischen denen des o-Xylols und p-Xylols liegen (die angewandte Reinigungsmethode der Firma ist uns natürlich nicht bekannt), ist das zweite Ergebnis mit den anderen Resultaten nicht in Einklang zu bringen. Es muß der wesentlich höhere Erstarrungspunkt, wie er von Rossini gefunden wurde, eine andere Ursache haben (Polymorphie?).

Ganz ähnlich, wenn auch nicht so kraß, liegt der Fall beim ortho-Xylol.

Autor	Schmp. (° C)	L _F
Huffmann, Parks u. Daniels ⁶ Rossini ¹³ Handbook of Chemistry and Physics (New York, 1944)	$-25,3^{\circ} \\ -25,3^{\circ} \\ -29,0^{\circ}/-27,1^{\circ}$	3113 cal 3330 cal
¹¹ Chem, Zbl. 1926 , II, 546.		

Tabelle 3. Erstarrungspunkte von ortho-Xylol.

¹² Chem. Zbl. **1926**, I, 2681.

¹³ Chem. Zbl. 1934, I, 1016.

Monatshefte für Chemie. Bd. 79/3-4.

Eine Berechnung der prozentuellen Isomerenbeimengung, sowie diese beim m-Xylol ausgeführt wurde, ergibt unter Zugrundelegung des Huffmann-Wertes 10,8%. Dieses Ergebnis wäre ebenfalls wahrscheinlich, steht aber mit den anderen Werten der physikalischen Konstanten in einem gewissen Widerspruch. Es wäre aber auch in diesem Fall denkbar, daß der um fast 4° höhere Erstarrungspunkt eine andere Ursache haben könnte.

Pseudocumol (1,2,4-Trimethylbenzol):

Da es uns nicht gelang, aus käuflichem "*Teer-Pseudocumol*" durch fraktionierte Destillation ein einwandfrei konstantsiedendes Produkt zu erhalten, wurde Pseudocumol nach einem von *Tschunkur* und *Eichler*¹⁴ ausgearbeitetem Verfahren hergestellt. Aus technischen Xylol wird mittels Paraformaldehyd und Salzsäure, unter Zusatz von Schwefelsäure zur Wasserabspaltung, ein Gemisch der drei isomeren Dimethylbenzylchloride hergestellt. Bei der Reduktion dieses Gemisches mit Zinkstaub und Natronlauge erhält man nur Pseudocumol. Das Rohprodukt wurde über geglühtem Natriumsulfat getrocknet, zuerst fraktioniert destilliert und die Hauptfraktion (Sdp. 170,0°) noch einer Vakuumdestillation unterworfen. Seine physikalischen Konstanten sind:

Tabelle 4. Physikalische Konstanten des Pseudocumols.

MolGew	. 120,18
Sdp	$. + 53,0^{\circ}/12 \text{ mm}$
Schmp	.— 52,0°
c_p^{21}	. 0,415 cal/g
$d_{20}^{\hat{2}0}$. 0,8790
$n_{D}^{\tilde{20}}$. 1,50533
ε ²⁰	. 2,41 ($\lambda = 300 \text{ m}$)
γ^{20}	. 29,93 Dyn/cm
η^{20}	. 0,878 C. P.

Tabelle 5. Die Erstarrungspunktevon Pseudocumol.

Autor	Schmp. (° C)
Menschutkin ³ Jäger ¹⁵ Timmermanns ¹⁶ Smith u. Lund ¹⁷	$ \begin{array}{c c} - 57,4^{\circ} \\ - 60,5^{\circ} \\ - 61,0^{\circ} \\ - 45,00^{\circ} \end{array} $

¹⁴ Chem. Zbl. 1931, I, 360.

¹⁵ Z. anorg. Chem. 101, 111 (1917).

¹⁶ Chem. Zbl. 1921, III, 287.

¹⁷ J. Amer. chem. Soc. 52, 4144 (1930).

¹⁸ L. B. III/1, 347 (1933).

Auch hier gilt dasselbe wie beim m-Xylol oder o-Xylol: sehr gutes Übereinstimmen dieser Werte mit denen der Literatur mit Ausnahme des Erstarrungspunktes; diese zeigen allerdings besonders hohe Differenzen (s. nebenstehende Tab. 5). Da der von uns gefundene Wert ungefähr in der Mitte dieser beiden Wertgruppen liegt, läßt sich kein Urteil darüber abgeben. Nimmt man die Werte von *Rossini* und *Smith* u. *Lund* als die richtigen an, so müßte man feststellen, daß bei der von uns durchgeführten Darstellungsart neben Pseudocumol auch noch andere Isomere hergestellt wurden.

Versuchsergebnisse.

a) Die Mischungswärmen.

Abb. 1. Die Mischungswärmen ΔH von Chlorex mit kernmethylierten Benzolen. (T = 19-22°C.)

Tabelle 6. Die Mischungswärmen von Chlorex mit kernmethylierten Benzolen.

					x _{Chlorez}	2				ichs- ratur C
Chiorex mit	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	Versu tempe
Toluol	21,5	35,8	45,5	52,0	54,0	51,0	43,9	32,7	17,3	22°
p-Xylol	33,0	56,5	71,8	80,0	83,3	80,5	71,7	56,5	31,0	19°
m-Xylol	40,0	72,5	91,7	99,3	101,7	97,5	86,0	67,0	39,0	21°
Pseudocumol.	51,0	86,2	111	129	140	139	123	93,5	51,0	22°

Abb. 1 zeigt die experimentellen, Tab. 6 enthält die extrapolierten (endothermen) Werte der Mischungswärmen pro Mol Mischung.

Eine Erhöhung der Kernmethylierung des Benzols bedingt eine Vergrößerung der endothermen Mischungswärme, also eine Abnahme der gegenseitigen Löslichkeit, wobei die Mischungswärmekurven fast symmetrisch sind. Die Steigerung des positiven Wärmebedarfes von System zu System entspricht ungefähr derselben, die wir bereits bei den Systemen mit den n-Alkylbenzolen¹ gefunden hatten.

Die Systeme Chlorex-Dimethylbenzole: Aus Abb. 1 ersieht man, daß das System mit m-Xylol den größten, das mit p-Xylol den kleinsten Wärmebedarf hat. Leider war es aus Mangel an reinem o-Xylol nicht möglich, mehr als einen Punkt zu messen, der aber seinem Wert nach zwischen den beiden anderen Kurven zu liegen kommt. Ein Vergleich mit dem entsprechenden n-Alkylbenzolsystem (Äthylbenzol)¹ ergibt, daß wahrscheinlich o-Xylol und Äthylbenzol etwa die gleiche Mischungswärme mit Chlorex zeigen, während das p-Xylol etwas exothermer, das m-Xylol sich etwas endothermer mischt.

Das System Chlorex-Pseudocumol: Dieses dreifach methylierte Benzol entspricht in Mischungen mit Chlorex innerhalb der Meßgenauigkeit vollkommen jenem System, das in seiner normalen Seitenkette drei Kohlenstoffatome hat (n-Propylbenzol).

Zusammenfassend läßt sich also sagen, daß energetisch kein wesentlicher Unterschied darin besteht, ob das Toluol in seiner Seitenkette um je eine CH_2 -Gruppe verlängert oder aber in seinem Kern je eine weitere CH_3 -Gruppe substituiert wird.

b) Die Molwärmen.

Abb. 2. Die ΔC_p -Werte der untersuchten Systeme.

Das System Chlorex-Toluol: Die Mischungswärme dieses Systems hat einen positiven Temperaturkoeffizienten $(\Delta C_{p \text{ (max)}} \simeq +1.4\%)$.

Die Systeme Chlorex-Dimenthylbenzole: Innerhalb der zu erreichenden Meßgenauigkeit ist C_p für das m-Xylolsystem additiv (d. h. also ΔH temperaturunabhängig), das p-Xylolsystem in seinem $\Delta C_{p \text{ (max)}} \simeq \simeq + 1,3\%$ positiv. Annähernd derselbe Wert des positiven Temperaturkoeffizienten wurde beim Äthylbenzolsystem gefunden.

Tabelle 7. Die spezifischen Wärmen cp der einzelnen Systeme.

Chlorox mit					a	Chlorez	ς.				
	0,0	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1,0
o-Xylol m-Xylol p-Xylol Pseudocumol	0,410 0,405 0,400 0,415	0,399 0,396 0,409	0,393 0,393 0,403	0,388 0,389 0.398	0,384 0,386 0,392	0,379 0,382 0,387	0,375 0,378 0,382	0,370 0,374 0,377	0,366 0,370 0 372	0,369 0,363 0,365 0 368	$0,367 \\ 0,360 \\ 0,361 \\ 0,365$

Das System Chlorex-Pseudocumol: Aus dem $\Delta C_{p \text{ (max)}} \simeq -0.4\%$ ergibt sich, daß die Mischungswärme dieses Systems einen negativen Temperaturkoeffizienten hat, also vergrößert sich mit fallender Temperatur deren endothermer Wert.

Dieser Übergang von zuerst positivem Wert des Temperaturkoeffizienten zu einem negativen deutet im Zusammenhang mit der von System zu System zunehmenden endothermen Mischungswärme darauf hin, daß diese untersuchte Systemreihe steigende "*Entmischungstendenz*" hat, so wie dies allgemein auch bei der Systemreihe Chlorex-n-Alkylbenzole gefunden worden war.

c) Die Molvolumina und die bei diesen Systemen auftretenden Volumeffekte.¹⁹

Abb. 3. Die Volumeffekte ⊿V der untersuchten Systeme.

¹⁹ Die Messungen wurden von R. Reiberger durchgeführt.

Chlorox mit	x _{Chlorex}										
	0,0	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1,0
o-Xylol	0,877									1,185	1,219
m-Xylol	0,865	0,897	0,933	0,966	1,000	1,031	1,071	1,110	1,145	1,183	1,219
p-Xylol	0,860	0,893	0,929	0,965	1,001	1,038	1,074	1,110	1,144	1,180	1,219
Pseudocumol	0,879	0,908	0,938	0,970	1,001	1,034	1,067	1,104	1,140	1,179	1,218

Tabelle 8. Die Dichten d_{20}^{20} der einzelnen Mischungssysteme.

Betrachtet man aus Tab. 8 die Molvolumina der reinen Kohlenwasserstoffe, so stellt man fest, daß 1. keine regelmäßige Zunahme pro CH_3 -Gruppe auftritt, denn der Wert jedes Xylols liegt höher als aus Toluol und dem entsprechenden Trimethylbenzol zu erwarten ist, und daß 2. die Molvolumina der Xylole von o-Xylol über m-Xylol zu p-Xylol zunehmen. Das heißt also, daß das Molvolumen mit der gegenseitigen Entfernung der beiden Methylgruppen zunimmt, wobei dieses Anwachsen zwischen o-Xylol und m-Xylol größer ist als zwischen m-Xylol und p-Xylol.

Nach den Ergebnissen, die wir bei den n-Alkylbenzolen gefunden haben, beanspruchen m-Xylol und Äthylbenzol annähernd den gleichen molaren Raum, während das Molvolumen des Pseudocumols kleiner ist als das des n-Propylbenzols. Es zeigt sich also verständlicherweise, daß kernmethylierte Benzole mit CH_3 -Gruppen in ortho-Stellung eine dichtere Packung aufweisen als die entsprechenden isomeren n-Alkylbenzole.

Das System Chlorex-Toluol: Hier sei nur kurz das Ergebnis wiedergegeben, da dieses System an anderer Stelle bereits ausführlich besprochen wurde¹: Kontraktion ($\Delta V_{max} = -0,20\%$) über den gesamten Konzentrationsbereich.

Das System Chlorex-p-Xylol: Bei diesem System wechselt das Vorzeichen von ΔV , und zwar tritt im Bereich hoher Kw.-Konzentration Dilatation, im Bereich hoher Chlorex-Konzentration Kontraktion auf. Die Extremwerte für beide Volumeffekte sind nur sehr klein und liegen knapp über unserer Meßgenauigkeit. Dieses Ergebnis kann vielleicht so verstanden werden, daß gegenüber Toluol der Volumeffekt im ganzen gesehen sich nach oben, d. h. gegen die Richtung einer Volumaufweitung hin verschiebt, und daß auf der Chlorexseite die kleineren p-Xylolmoleküle relativ günstig zwischen den Chlorexmolekülen Platz finden. Diese Auffassung diente ja auch zur Erklärung für die Volumskontraktion beim System Chlorex-Toluol im gesamten Mischungsbereich.

Das System Chlorex-m-Xylol: Es tritt Dilatation über dem gesamten Konzentrationsbereich auf ($\Delta V_{\text{max}} = +0,20\%$), allerdings etwas geringer als bei Chlorex-Äthylbenzol.

Das System Chlorex-o-Xylol: Trotzdem nur ein Meßpunkt im Chlorexreichen Gebiet vorliegt, ist daraus doch zu entnehmen, daß bei diesem

240

System die größte Dilatation auftritt. Dies steht im Einklang mit der am Anfang dieses Kapitels gemachten Bemerkung, daß beim o-Xylol die dichteste Packung der Moleküle unter den Dimethylbenzolen auftritt.

Das System Chlorex-Pseudocumol: Es wird Dilatation über den gesamten Mischungsbereich gefunden ($\Delta V_{max} = +0.28\%$), die ihrer Größe nach über der liegt, die beim System Chlorex-n-Propylbenzol ($\Delta V_{max} = +0.24\%$) gefunden wurde. Auch in diesem Fall bedingt offenbar die "Spreizung" der ortho-Stellung zweier Methylgruppen im Pseudocumol eine Aufweitung des Mischungsvolumens.

d) Das Zustandsdiagramm Chlorex-Pseudocumol.

Abb. 4. Das Zustandsdiagramm Chlorex-Pseudocumol

$x_{ m Chlorex}$	Erstarrungs- punkte °C	Eutektikum °C
Pseudocumol	52 0°	
0.143	57.4°	
0,386	65,0°	-66.8°
0,488	65,8°	,
0,660	61,2°	66,8°
0,906	52,0°	
Chlorex	$-46,7^{\circ}$	

Tabelle 9. Das Zustandsdiagramm Chlorex-Pseudocumol.

Wie Abb. 4 zeigt, tritt bei diesem System ein Eutektikum bei ---66,8° auf. Beide Kurvenäste sind leicht konkav, der eutektische Punkt liegt bei $x_{\text{Chlorex}} = 0,45$. Es besteht also im gesamten flüssigen Bereich dieser beiden Komponenten unbeschränkte gegenseitige Löslichkeit.

Die molaren Gefrierpunktserniedrigungen und hieraus die molaren Schmelzwärmen der beiden reinen Komponenten lassen sich aus unseren Daten berechnen:

	T_F	E ,"	L_{F}
Chlorex	$226,7^{\circ}$	7,3°	2000 cal
Pseudocumol	$221,2^{\circ}$	3,9°	3010 cal

Zusammenfassung.

Bei den physikalischen Konstanten der Dimethylbenzole und des Pseudocumols fallen die zum Teil sehr großen Unterschiede unserer Erstarrungspunkte im Vergleich zu den bisher gemessenen auf. Die Mischungswärmen aller Dimethylbenzole mit Chlorex sind endotherm und nehmen von para- über ortho- zu meta-Xylol zu, diejenige des Systems Chlorex-Pseudocumol ist noch stärker endotherm. Beim System Chlorex-p-Xylol zeigt ΔV wechselndes Vorzeichen. Die beiden anderen Dimethylbenzolsysteme weisen Dilatation im gesamten Konzentrationsbereich auf. Chlorex-Pseudocumol zeigt stärkere Dilatation als die Xylolsysteme. Das Zustandsdiagramm Chlorex-Pseudocumol hat ein Eutektikum. Es werden die molaren Gefrierpunktserniedrigungen und molaren Schmelzwärmen berechnet.

 $\mathbf{242}$